ОСЦИЛЛОГРАФ СТРОБОСКОПИЧЕСКИЙ С7-8 ТЕХНИЧЕСКОЕ ОПИСАНИЕ И ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ


ОСЦИЛЛОГРАФ СТРОБОСКОПИЧЕСКИЙ С7-8 ТЕХНИЧЕСКОЕ ОПИСАНИЕ И ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ
ОСЦИЛЛОГРАФ СТРОБОСКОПИЧЕСКИЙ С7-8 ТЕХНИЧЕСКОЕ ОПИСАНИЕ И ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

скачать

Схема компенсации постоянного тока, состоящая из лампы ЛЗ, является источником управляющего напряжения Напряжение из этой схемы подается на контрольное гнездо напряжения смещения, умноженного на 100. Это напряжение в 100 раз больше эквивалентного напряжения, которое подается обратно иа стробирующие «ворота». С выхода схемы памяти сигнал поступает на вертикальный усилитель соответствующего канала. Усилитель канала А состоит из транзисторов ППЮ—ПП12. Кроме того, в схеме находится инвертирующий каскад на транзисторах ПП8, ПП9, который используется, когда переключатель НОРМАЛЬНО—ОБРАТНО находится в положении ОБРАТНО. В этом случае полярность изображенного сигнала будет обратной полярности поданного сигнала. Усиление инвертирующего каскада устанавливается точно равным единице с помощью потенциометра R85. С эмиттерного повторителя, собранного на транзисторе ППЮ, сигнал через переключатель В4 РЕЖИМ РАБОТЫ подается на два следующих каскада во всех положениях, кроме положения «А+Б». В положении переключателя «А+Б» сигнал подается через сопротивление R420 и складывается с сигналом в канале А, который производит алгебраическое суммирование двух сигналов. Каскады на транзисторах ППП и ПП12 образуют усилитель с обратной связью, который переворачивает и усиливает сигнал. Делитель с сопротивлением R119 СМЕЩЕНИЕ (в канале А) обеспечивает регулировку постоянного тока через сопротивление R120 и транзистор ППП для смещения изображения на экране ЭЛТ. Эмиттерный повторитель на транзисторе ПШ2 обеспечивает низкое выходное сопротивление для согласования усилителя с общим выходом.

Двухканальный коммутатор, собранный на транзисторах ПП206 и ПП206, имеет три состояния, выбираемые переключателем В4 РЕЖИМ РАБОТЫ. Положение переключателя определяет, какой сигнал (выход канала А или Б) подается в общий усилитель. В двухканальном режиме работы выходы каналов А и Б подаются попеременно к усилителю общего выхода с переключением после каждой «вырезки». В случае, когда переключатель стоит в положении «А», отрицательное напряжение подается на базу транзистора ПП205, а положительное — на базу транзистора ПП206. В этом случае транзистор ПП205 заперт, а ПП206 — проводит. Коллекторное напряжение транзистора ПП205 имеет свое наибольшее значение. Разность напряжений между двумя коллекторами подается непосредственно на диодные «ворота» каналов А и Б. Ток, текущий через сопротивления R242 и R243, смещает в прямом направлении «ворота» канала А, и сигнал канала А проходит в общий усилитель. В это время диоды в «воротах» канала Б смещены в обратном направлении и не могут пропустить сигнал канала Б. В положении переключателя «А Б» базы обоих транзисторов коммутатора подключаются к источнику минус 12,6 3, после чего триггер переходит в бистабильный режим. В этом режиме подается питание на блокинг-генератор, собранный на транзисторе ПП204, который запускается импульсами из схемы управления. Выходной запускающий сигнал из блоки ir-генератора проходит через диоды Д205 и Д206 для запуска переключающего триггера. В остальных положениях переключателя питание с блокинг-генератора снимается и схема не работает. С диодных «ворот» коммутатора сигнал канала А или Б подается на общий предварительный усилитель и затем на фазоинвертор. С выхода предварительного усилителя и фазоинвертора сигналы противоположной полярности подаются на разъем ШЗ для соединения с оконечными каскадами нахо ицимися в базовом приборе. Примечание из инструкции. В случае наблюдения одной линии развертки на экране ЭЛТ в режиме «Л Б» следует переключатель В4 переключить из положения «А-Б» в положение «А или «Б» и обратно.

Описание работы стробоскопической развертки. Блок включает в себя схему деления частоты, автоматического сдвига стробоимпульса и схему управления лучом ЭЛТ. Сигнал запуска с входного гнезда Г1 СИНХР. через переключатель В1 СИНХРОНИЗАЦИЯ поступает на буферный усилитель (на эмиттер транзистора ПП2). Переключатель СИНХРОНИЗАЦИЯ с помощью трансформатора выбирает полярность запуска так, что на буферный усилитель подается сигнал положительной полярности.

Буферный усилитель выполнен на транзисторе проводимости и представляет собой усилитель с заземленной базой. Основное назначение данного усилителя — ослабление обратной реакции туннельного диода Д2 на входе капала синхронизации. В режиме высокочастотной синхронизации (при положении переключателя СИНХРОНИЗАЦИЯ—ВЧ) сигнал запуска подается на гнездо Г2 ВЧ СИНХР. Высокочастотная синхронизация осуществляется при помощи туннельного диода Д1 и основана на явлении захватывания частоты генератора на туннельном диоде внешним сигналом. Для ослабления влияния туннельного диода Д1 на исследуемые цепи используется эмиттерный повторитель, собранный на транзисторе ПШ- Он также защищает туннельный диод Д1 от перегрузки. Импульсы с туннельного диода Д1 через переключатель BI-III СИНХРОНИЗАЦИЯ подаются на буферный усилитель. Сигнал запуска с коллектора транзистора ПП2 поступает на схему синхронизации, выполненную на туннельных диодах Д2, ДЗ, Д9. Схема синхронизации работает в двух режимах: ждущем и автоколебательном и совместно со схемой деления частоты осуществляет деление частоты входного сигнала до 20— 14 кГц. Переход схемы из ждущего режима н автоколебательный и обратно осуществляется изменением напряжения питания туннельного диода Д2.

Описание работы туннельных диодов (ТД). Туннельные диоды используются в блоке развертки в нескольких схемах и поэтому имеет смысл рассмотреть их работу отдельно. Туннельные диоды (ТД) характеризуются малой индуктивностью и емкостью, их можно использовать как малоинерционный ключ. На рисунке в инструкции показана типичная вольтамперная характеристика туннельного диода. При увеличении тока от минимального до пикового значения (точка «Б») напряжение мало увеличивается и составляет 50—75 мВ, что характеризуется как состояние «низкого» напряжения. Дальнейшее увеличение тока вызывает переброс напряжения в точку «С» (состояние «высокого» напряжения) За время перехода из точки «Б» в точку «С» формируется п редний фронт импульса, за перевод ТД из точки «С» в точку «Е формируется вершина импульса, прн перемещении по вольтампер ой характеристике из точки «Е» до точки «К» формируется задний фронт импульса.

Туннельный диод Д1 работает в схеме генератор самовозбуждения. Его рабочая точка выбрана на участке с отрицательным сопротивлением на падающей части вольтамперной характеристики является накопителем энергии в момент формирования импульса. В схемах с резистивным питанием переключение режима ТД осуществляется управляющими импульсами тока. Рассмотрим работу туннельных диодов в схемах синхронизации при формировании1 «быстрого» и «медленного» пилообразного напряжения.

Описание работы схемы синхронизации в ждущем режиме. Рабочая точка туннельных диодов Д2 и Д1> выбрана на первом нарастающем участке вольтамперной характеристики ТД, а ТДДЗ — на втором. Выбор рабочей точки ТД Д2 производится регулировкой R19 ЧУВСТВИТ. и R25, а ТД ДЗ — регулировкой R32. При подаче сигнала на гнездо Г1 СИНХР и выборе соответствующей по полярности в коллекторе транзистора ПП2, являющегося развязывающим каскадом и защищающим ТД Д2 от перегрузки, нарастает импульс тока, часть из которого попадает в ТД Д2 и переводит его из рабочей точки «А» в точку «С». При этом формируется положительный перепад тока, который подается на ТД Д9 через цепочку С9 и через дроссель ДрЗ на базу транзистора ПП5, отпирает его, и напряжение на коллекторе транзистора ПП5 падает. В результате этого отпирается транзистор ПП4 и диод Д5. Возрастающее падение напряжения на сопротивлениях R32 и R33 уменьшает ток, проходящий через ТД ДЗ, и переключает его в состояние «низкого» напряжения. Кроме того, ток, проходящий через диод Д6, увеличивает падение напряжения на сопротивлениях R25 и R26, в результате чего уменьшается ток ТД Д2 и он переходит в состояние «низкого» напряжения. ТД Д2 находится в состоянии «низкого» напряжения, пока ТД ДЗ находится в состоянии «низкого» напряжения, т. к. между ними существует связь через сопротивление R28. Следовательно, ТД Д2 нельзя запустить, пока ТД ДЗ не изменит своей рабочей точки.

Следует отметить, что транзистор ПП5 открывается на короткое время, равное длительности импульса с ТД Д2. В момент открытия транзисторов ПП4 и ПП5 разряжается конденсатор С14 и отпирается транзистор ППЗ. Коллекторный ток транзистора ППЗ поддерживает туннельные диоды Д2 и ДЗ в состоянии «низкого» напряжения. Спустя некоторое время, определяемое постоянной времени цепи R37, R38, С14, диод Д8 откроется и заряд емкости С14 прекратится, что приведет к закрытию транзистора ППЗ и, следовательно, к уменьшению его коллекторного тока. Ток ТД ДЗ увеличивается и диод переходит в состояние «высокого» напряжения. На этом заканчивается цикл работы схемы синхронизации, ТД Д2 готов к приему запускающего сигнала. Регулировкой R37 ПОДСТРОЙКА время синхронизма изменяется для получения кратности деления входных сигналов.

Описание работы схемы в автоколебательном режиме. Различие между ждущим и автоколебательным режимом работы ТД Д2 при постоянной нагрузке заключается в выборе начальной рабочей точки на вольтамперной характеристике ТД Д2. Для автоколебательного режима рабочая точка ТД Д2 выбирается на падающем участке вольтамперной характеристики диода при помощи регулировки. Схема на ТД Д9 представляет собой релаксационный генератор, работающий в ждущем режиме, и предназначена для формирования основных синхроимпульсов. Длительность синхроимпульсов определяется индуктивностью первичной обмотки трансформатора ТрЗ, сопротивлением туннельного диода и сопротивлением источника питания. Со вторичной обмотки трансформатора ТрЗ синхроимпульсы поступают на гнездо ГЗ ВЫХОД, расположенное на лицевой панели блока, для запуска внешних устройств. Положительный синхроимпульс, снимаемый с ТД Д9, подается в цепь базы транзистора ПП6. Транзистор ПП6 служит для изменения полярности импульса. Отрицательным импульсом с коллектора транзистора ПП6 производится переключение туннельного диода Д13. Рабочая точка 1Д Д13 выбирается на второй ветви вольтамперной характеристики диода. ТД Д13 имеет резистивную схему питания и, имея два устойчивых состояния, работает как двухстабильный триггер. Переключение триггера в начальное состояние осуществляется положительным импульсом, поступающим со схемы сравнения. Отрицательный импульс, формируемый триггером, запускает генератор быстрого пилообразного напряжения (ГБПН).

скачать файл

download user’s guide C7-8 File-Size: 1,7 мб